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Abstract. We demonstrate a cryogenic optomechanical system comprising a
flexible Si3N4 membrane placed at the center of a free-space optical cavity in
a 400 mK cryogenic environment. We observe a mechanical quality factor Q >
4 ⇥ 106 for the 261 kHz fundamental drum-head mode of the membrane, and
a cavity resonance halfwidth of 60 kHz. The optomechanical system therefore
operates in the resolved sideband limit. We monitor the membrane’s thermal
motion using a heterodyne optical circuit capable of simultaneously measuring
both of the mechanical sidebands, and find that the observed optical spring and
damping quantitatively agree with theory. The mechanical sidebands exhibit a
Fano lineshape, and to explain this we develop a theory describing heterodyne
measurements in the presence of correlated classical laser noise. Finally, we
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discuss the use of a passive filter cavity to remove classical laser noise, and
consider the future requirements for laser cooling this relatively large and low-
frequency mechanical element to very near its quantum mechanical ground state.
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1. Introduction

Cavity optomechanical systems offer a new arena for studying nonlinear optics, the quantum
behavior of massive objects, and possible connections between quantum optics and condensed
matter systems [1–6]. Many of the scientific goals for this field share two prerequisites: cooling a
mechanical mode close to its ground state, and detecting its zero-point motion with an adequate
signal-to-noise ratio.

The first experiment to satisfy these prerequisites used a conventional dilution refrigerator
to cool a piezoelectric mechanical element coupled to a superconducting qubit [7]. The
base temperature of the refrigerator ensured that one of the higher-order vibrational modes
(a dilatational mode with resonance frequency ⇠6 GHz) was in its quantum mechanical ground
state. At the same time, the mechanical element was strongly coupled to a superconducting qubit
via its piezoelectric charge, ensuring that the presence of a single phonon in the dilatational
mode could be detected with high fidelity.

Despite the success of this approach, many optomechanics experiments would benefit from
the use of low-order mechanical modes, mechanical modes with higher quality factors Q (the
mechanical element used in [7] had Q ⇠ 260), and direct coupling between the mechanical
element and the electromagnetic field (i.e. rather than via a qubit). In addition, some experiments
will require the mechanical system to couple to optical frequencies (i.e. visible and near-infrared
light) [8] in addition to microwaves [9].

A number of groups have developed optomechanical systems in which a high-quality, low-
order vibrational mode of an object is coupled to a microwave or optical cavity of very low
loss [1, 2]. These high-quality-factor mechanical devices typically resonate at frequencies far
too low to be cooled to the ground state by conventional refrigeration techniques. Nevertheless,
their vibrational modes can be cooled well below the ambient temperature using coherent states
of the electromagnetic field (produced, e.g. by an ideal, noiseless laser) [10, 11]. The technique
of using coherent laser light to reduce the temperature of another system (i.e. ‘laser cooling’)
has been used with great success in the atomic physics community to both prepare a single
trapped ion in its motional ground state [12] and provide one of the cooling stages necessary to

New Journal of Physics 14 (2012) 115018 (http://www.njp.org/)

http://www.njp.org/


3

achieve Bose–Einstein condensation in a dilute atomic gas [13]. Laser cooling also has a long
history in optomechanics, and a number of descriptions of laser-cooled optomechanical systems
have been presented in the literature [1, 2, 14, 15].

To date, two groups have described experiments in which laser cooling (or its microwave
analog) has been used to reduce the vibrations of a solid object close to its quantum mechanical
ground state (i.e. to mean phonon number less than unity) [16, 17]. In these experiments the
electromagnetic drive provided both the cooling and single-sideband readout of the mechanical
motion.

To achieve a mean phonon number very close to zero, a number of technical obstacles
must be overcome. In general, laser cooling is optimized when the mechanical mode is weakly
coupled to its thermal bath and well coupled to an electromagnetic cavity. This can be achieved
by using a mechanical oscillator of high Q, and by applying a strong drive to an optical cavity
of high finesse F . However even when these criteria are met, there is a minimum temperature
that can be achieved by laser cooling. For a laser without any classical noise, this limit is set
by the quantum fluctuations of the light in the cavity. Also, as described in [10, 11], a laser
without classical noise can achieve ground state cooling only if the optomechanical system is
in the resolved sideband regime (i.e. the mechanical frequency is larger than the cavity loss
rate). However if the laser that is driving the cavity exhibits classical fluctuations, its cooling
performance will be degraded because classical fluctuations carry a non-zero entropy [18, 19].
Qualitatively speaking, the fluctuating phase and amplitude of the light result in fluctuating
radiation pressure inside the cavity, which in turn leads to random motion of the mechanical
element that is indistinguishable from thermal motion. This point has been discussed in the
optomechanics literature, and may play an important role in some experiments [20].

Here we present a description of an experiment that meets many of the criteria for ground
state laser cooling and detection (in that a high quality mechanical element is coupled to a
high-finesse cavity in a cryogenic environment), but whose cooling performance is limited
by classical laser noise. This experiment employs a membrane-in-the-middle geometry [21],
in which a flexible dielectric membrane is placed inside a free-space optical cavity. The
typical dimensions of free-space optical cavities lead to the requirement that the membrane
have a lateral dimension ⇠1 mm to avoid clipping losses at the beam waist. This leads to a
fundamental drum-head mode with a resonance frequency ⇠105 Hz, requiring laser cooling
to ⇠1 µK in order to reach the ground state. Despite this low temperature, this type of
optomechanical system is appealing for a number of reasons. The Si3N4 membranes used
here exhibit exceptionally high quality factors Q (even when they are patterned into more
complex shapes [22]), low optical absorption [23], and compatibility with monolithic, fiber-
based optical cavities [24]. Furthermore, the membrane-in-the-middle geometry provides access
to different types of optomechanical coupling that may serve as useful tools for addressing
quantum vibrations [21, 23, 25].

At a cryogenic base temperature of 400 mK, we observe a mechanical quality factor
Q > 4 ⇥ 106 for the 261 kHz fundamental membrane mode, and a cavity resonance halfwidth of
60 kHz, meaning the system operates in the resolved sideband limit. We monitor the membrane’s
thermal motion using a heterodyne optical circuit capable of simultaneously measuring both of
the mechanical sidebands, and find that the observed optical spring and damping quantitatively
agree with theory.

To quantify the role of classical laser noise in this system, as well as optomechanical
systems more generally, we also present a detailed theoretical model of optomechanical systems
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that are subject to classical laser noise. This model describes the roles of amplitude noise, phase
noise, and amplitude-phase correlations in the multiple beams that are typically used to cool
and measure an optomechanical system. Expressions are derived for the heterodyne spectrum
expected for optomechanical systems in the presence of correlated noise sources, and we discuss
the limits that classical laser noise imposes on cooling and reliably measuring the mean phonon
number.

2. Cryogenic apparatus

Figure 1(a) shows a schematic of our cryogenic optomechanical system. A 1.5 mm ⇥ 1.5 mm ⇥
50 nm stoichiometric Si3N4 membrane resides at the center of a (nominally) 3.39 cm long optical
cavity. The membrane is mounted on a three-axis cryogenic actuator allowing us to tilt the
membrane about two axes and displace it along the cavity axis. The cavity, membrane, and a
small set of guiding optics are cooled to approximately 400 mK in a 3He cryostat. Free-space
laser light is coupled to the cavity via one of the cryostat’s clear-shot tubes.

The most reliable way to measure the membrane’s mechanical quality at 400 mK is to
perform a mechanical ringdown by driving the membrane at its resonant frequency (!m =
2⇡ ⇥ 261.15 kHz) to large amplitude with a nearby piezo, shutting off the drive, and monitoring
the decay of the membrane’s vibrations. We monitor the membrane’s motion interferometrically
using a laser of wavelength 935 nm, which is far enough from the design wavelength of our
cavity mirror coatings (1064 nm) that the cavity finesse is ⇠1; this ensures the measurement
exerts no significant back action upon the membrane. Figure 1(b) shows a typical mechanical
ringdown measurement. To ensure the membrane motion is in the linear regime, we let it ring
down until its frequency stabilizes before fitting the data to an exponential curve (the inferred
time constant is then insensitive to the choice of time window). The observed ringdown time
⌧m = 5.3 s corresponds to a mechanical quality factor Q = 4.3 million at 400 mK, though this
value varies with thermal cycling (i.e. between 400 mK and 4 K), and typically ranges from
⇠4–5 million.

As shown in figure 1(a), two independent Nd-YAG lasers (wavelength � = 1064 nm)
provide a total of five beams for driving the cavity and performing the heterodyne detection
of the membrane’s motion (described below). To achieve a large optomechanical back action
with these lasers, we require a high-finesse optical cavity. The top and bottom mirrors in
figure 1(a) are designed to have a power reflectivity exceeding 99.98 and 99.998% respectively
at � = 1064 nm, which would correspond to a cavity finesse of 30 000. Generally these mirrors
perform above this specification, however. Figure 1(c) shows the results of a typical cavity
ringdown measurement performed by toggling the power of a laser driving the cavity, and
collecting the power leaking out of the cavity when the drive is shut off. The measured time
constant ⌧c = 1.34 µs corresponds to a finesse of F = 37 000. This value generally depends on
the day the data was taken and the orientation of the membrane. It is lower than the value we
measured after initially cooling to 400 mK (⇠80 000). We believe this reduction was caused
by either gradual condensation of materials on the surfaces over months of operation, or a
change in the membrane’s alignment, which can steer the cavity mode away from a high-
performance region of the end mirrors (a spatial dependence of cavity-mirror performance was
also observed in [23]). The finesse measured in figure 1(c) corresponds to a cavity loss rate
of /2⇡ = 120 kHz, meaning the cryogenic optomechanical system operates in the resolved
sideband regime, a condition necessary for ground-state cooling [10, 11].
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Figure 1. Cryogenic optomechanical system. (a) Two Nd-YAG lasers probe
and cool the cryogenic optomechanical system. The lasers are frequency-locked
⇠9 GHz apart by feeding back on the beat signal from a fast photodiode
(FPD). The majority of the signal laser’s output serves as a heterodyne local
oscillator. The rest is shifted 80 MHz with an acousto-optical modulator (AOM)
and then phase modulated using an electro-optical modulator (EOM) with 22%
of the power in ±15 MHz sidebands. These beams land on a sampler, and a
small amount is sent to the cold cavity. The remainder lands on a ‘reference’
photo diode (RPD) to monitor the heterodyne phase. Light leaving the cavity
is collected by another ‘signal’ photodiode (SPD) to monitor the membrane’s
motion. The signal laser is locked to the cavity with the Pound–Drever–Hall
(PDH) method using the 15 MHz sidebands. The frequency and amplitude of the
cooling laser are fine-tuned with an additional AOM (not shown). (b) Mechanical
ringdown measurement, showing the membrane’s amplitude after a drive piezo is
turned off. (c) Cavity ringdown measurement, showing power leaving the cavity
after the drive laser is turned off. The solid lines in (b) and (c) show exponential
fits to the data. (d) Power spectral density of the heterodyne sidebands from the
membrane’s Brownian motion at 400 mK. The frequency is plotted relative to
!if/2⇡ = 80 MHz, and the lower sideband (red) has been folded on top of the
upper sideband (blue) for comparison.

The first purpose of this apparatus is to perform a heterodyne measurement of the
membrane’s motion. As shown in figure 1(a), light from the ‘signal laser’ is split into several
frequencies before it interacts with the cavity. The inset of figure 1(a) shows a summary of the
relative magnitudes and frequencies of the laser light landing on the cavity, with dashed lines
roughly illustrating the susceptibility of the different cavity resonances. Most of the light serves
as a local oscillator tuned far from the cavity resonance; this power Plo simply bounces off the
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first cavity mirror and returns to a ‘signal’ photodiode (SPD). A small fraction of this light
is shifted by !if/2⇡= 80 MHz using an acousto-optical modulator (AOM) and is used to both
lock the laser near the cavity resonance and record the membrane’s motion. Locking is achieved
via the Pound–Drever–Hall technique [26] with 15 MHz sidebands generated by an electro-
optical modulator (EOM). A sampler directs ⇠5% of these beams’ power into the cryostat
and cavity. We use the remaining 95% (sent to a ‘reference’ photodiode (RPD)) to monitor
the laser’s phase and power. The sampler then passes ⇠95% of the light escaping the cryostat
through to the signal photodiode. This signal is demodulated at the beat note !if/2⇡ = 80 MHz
in order to simultaneously detect the two sidebands generated by the membrane’s thermal
motion.

Figure 1(d) shows a typical power spectral density of these sidebands. A peak appears
at the membrane’s fundamental mechanical frequency !m/2⇡ ⇡ 261.1 kHz as expected. The
sidebands are identical, as expected for an interferometric measurement in which the laser noise
contributes a negligible amount of force noise compared to the thermal bath and the mean
phonon number is � 1.

The second purpose of this apparatus is to manipulate the membrane with optical forces,
and so we include a second (cooling/pump) laser that addresses a different longitudinal mode of
the cavity. If the cooling and signal beams address the same cavity mode, the beating between
the two beams leads to a large heterodyne signal that clouds our measurement and a strong
mechanical drive at the beat frequency (usually on the order of the mechanical frequency). This
can cause the system to become unstable and makes the data difficult to interpret. To overcome
this challenge, we lock the cooling and signal lasers such that they address different longitudinal
cavity modes roughly 9 GHz apart. The longitudinal modes are chosen to be two free spectral
ranges apart so that the dependence of cavity resonance frequency on membrane displacement
is approximately the same for the two modes. This way, drift or vibrations in the membrane
mount will (to lowest order) not change the relative frequencies of the modes. With the lasers
locked in this way, any beating between the cooling and signal lasers occurs at frequencies that
are irrelevant to the membrane’s mechanics.

As shown in figure 1(a), the two lasers are locked by picking off a small portion of both
beams and generating an error signal based on the frequency of their beat note. We have locked
the free-running lasers ⇠9 GHz apart with an rms deviation of ⇠10 Hz. When the signal laser is
simultaneously locked to the membrane cavity, however, this performance degrades to an rms
deviation of ⇠1 kHz; this is because the membrane cavity is quite sensitive to environmental
noise such as acoustic vibrations in the room, which injects additional noise into the signal
laser’s frequency (this first-generation cryogenic apparatus did not include significant vibration
isolation). When the two lasers are locked to each other and the signal laser is locked to the
membrane cavity, the cooling laser can then be fine-tuned relative to its cavity mode using an
additional AOM (not shown).

The cooling beam adds a significant optomechanical damping and spring to the membrane,
so the linewidth and center frequency of the sidebands in figure 1(d) depend on its detuning
1p and power Pp. Figure 2(a) shows typical heterodyne spectra for the cooling beam red-
detuned by 1p/2⇡ = �250 kHz. As the cooling power Pp is increased from Pp = 0 in
figure 1(a), the membrane’s vibrations are laser cooled; the linewidth increases and the
integrated area under the curve decreases qualitatively as expected. At high Pp the red and
blue sidebands exhibit a large asymmetry. We find the spectra are always well-fit by a Fano
lineshape.
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Figure 2. Response of membrane to the cooling laser. (a) Typical heterodyne
spectra (red and blue sidebands folded on top of each other) for increasing values
of cooling laser power Pp at 1p/2⇡ = �250 kHz. Solid lines are fits to Fano
lineshapes (simultaneously fitting the width and frequency of both sidebands).
(b) Membrane frequency and damping determined from Fano fits (similar to (a))
for different values of 1p/2⇡ . Solid lines represent a simultaneous fit of these
two data sets to optomechanical theory.

Figure 2(b) shows the membrane’s mechanical frequency and damping as a function
of 1p. We simultaneously fit the frequency and damping to the theory described in [11]
(and outlined in section 3 below), allowing four parameters to vary: the free spectral range
(FSR), the ratio between the cavity’s loss through the entrance mirror to the total cavity loss
ext/ , the bare mechanical frequency !m, and the signal beam detuning 1s. The results of
this fit are: FSR = 8.767 341 0 GHz ± 5 kHz (Note the statistical fit error was 460 Hz. The
quoted error reflects the precision of a frequency measurement used to generate 9 GHz error
signal.), ext/ = 0.243 ± 0.003, !m/2⇡ = 261 150.3 ± 0.9 Hz, and 1s/2⇡ = �880 ± 250 Hz.
The precise value of the FSR adds an overall offset to 1p (i.e. a horizontal shift in figure 2(b)).
The estimate of FSR from this fit is significantly more precise than our independent estimate
of 8.84 GHz based on cavity length. The ratio ext/ simultaneously scales the optical spring
and damping strength. This can be independently estimated as ext/ = 0.2 from measuring the
cavity ringdown and the fraction of the incident light lost in the cavity with the laser tuned
on resonance (64% in this case). This estimate is lower than the fit value by 20%, which we
attribute to imperfect cavity mode matching and that the membrane position varies by ⇠10 nm
during measurements, which can affect the cavity finesse [23]. We allow the bare mechanical
frequency to float because we find that it can drift by a few Hz on the hour time scale. This adds
a constant offset to the frequency plot in figure 2(b). Finally, for this particular experiment we
locked the signal beam as close to resonance as possible, but as this tends to drift on the scale
of hours, we left 1s as a fitting parameter. 1s is responsible for adding a very small constant
offset to the damping and spring. All other parameters such as the cavity finesse and input power
were measured independently. The simultaneous fit is thus heavily constrained and agrees with
the data very well. We also find that the fit is similarly convincing if we simply fix 1s = 0 and
!m/2⇡ = 261.15 kHz (a typical value of !m).
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While the optical spring and damping in figure 2(b) are well-modeled by standard theory,
the interpretation of the sideband amplitudes and lineshapes in figure 2(a) is not obvious. As
we now discuss, the Fano lineshape arises from interference between the membrane’s response
to classical laser noise and the classical laser noise itself, an effect similar to what is seen in
single-sideband measurements in other optomechanical systems [16, 27, 28].

3. General model of optomechanics with classical laser noise

In this section, we present and solve the equations of motion for the optical cavity and the
mechanical oscillator. Since the local oscillator beam is far off any cavity resonance frequency,
we can neglect it here. We will let âs be the bosonic annihilation operator of the cavity mode
addressed by the lock/signal beam, whereas âp is the annihilation operator for the cavity mode
addressed by the cooling (pump) beam. The position operator of the mechanical oscillator is
x̂ = x0 + xzpf(ĉ + ĉ†), where ĉ is the phonon annihilation operator, x0 = hx̂i and xzpf is the size of
the zero point fluctuations. The Hamiltonian is

H =
X

j=s,p

h̄
�

! j + g j x̂
�

â†
j â j + h̄!mĉ†ĉ + Hdrive + Hdiss. (1)

The interaction term describes the modulation of the cavity resonance frequencies by the motion
of the mechanical oscillator, Hdrive describes the laser drive and Hdiss describes the coupling
to both the electromagnetic and mechanical environment. This coupling to external degrees
of freedom is conveniently described by input–output theory [29, 30], which gives rise to the
equations of motion

˙̂a j = �
⇣ j

2
+ i ! j

⌘

â j � i g j x̂ â j +
p

 j,ext â j,in +
p

 j,int ⇠̂ j , j = s, p, (2)

˙̂c = �
⇣�

2
+ i !m

⌘

ĉ � i
X

j

g j â
†
j â j +

p
� ⌘̂. (3)

Here,  j,ext is the decay rate of mode j through the mirror which couples the cavity to the
external laser drive, whereas  j,int describes other types of optical decay. The total linewidth of
cavity mode j is  j =  j,ext +  j,int. The input modes ⇠̂ j describe optical vacuum noise and fulfill
h⇠̂ j(t)⇠̂

†
j 0(t 0)i = �(t � t 0)� j, j 0 and h⇠̂ †

j (t)⇠̂ j 0(t 0)i = 0. The coupling to the laser drive is described
by the input mode

â j,in(t) = e�i � j t



K j +
1
2

�

�x j(t) + i �y j(t)
�

�

+ ⇠̂ j,in, (4)

where K j = p

Pj/h̄� j , with �s (�p) being the drive frequency and Ps (Pp) the power of the
lock (cooling) beam. We have introduced the classical variables �x j and �y j which describe
technical laser amplitude and phase noise, respectively. Since we will only be concerned with
the noise close to the mechanical frequency !m, we can assume a white noise model where

h�x j(t)�x j 0(t 0)i = C j,xx�(t � t 0)� j, j 0,

h�y j(t)�y j 0(t 0)i = C j,yy�(t � t 0)� j, j 0, (5)

h�x j(t)�y j 0(t 0)i = C j,xy�(t � t 0)� j, j 0 .

The amplitude and phase noise is characterized by the real numbers C j,xx , C j,yy > 0 and C j,xy

that are proportional to laser power. The Cauchy–Bunyakovsky–Schwarz inequality dictates
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that C2
j,xy 6 C j,xxC j,yy . Note that C j,xx = 1 or C j,yy = 1 corresponds to the condition in which

the laser’s classical noise is equal to its quantum noise. The operator ⇠̂ j,in describes vacuum
noise and obeys the same relations as ⇠̂ j . The intrinsic linewidth of the mechanical oscillator
is � , and ⌘̂ describes thermal noise obeying h⌘̂(t)⌘̂†(t 0)i ⇡ h⌘̂†(t)⌘̂(t 0)i = nth�(t � t 0), where
nth ⇡ kBT/h̄!m is the phonon number in the absence of laser driving.

For sufficiently strong driving and weak optomechanical coupling, we can linearize the
equations of motion by considering small fluctuations around an average cavity amplitude. We
write

â j(t) = e�i � j t(ā j + d̂ j(t)), (6)

where

ā j =
p

 j,ext K j

 j/2 � i 1 j
(7)

and 1 j = � j � ! j � g j x0 is the laser detuning from the cavity resonance in the presence of a
static membrane. Defining the dimensionless position operator ẑ = ĉ + ĉ†, the Fourier transform
as f (†)[!] = R 1

�1 dt ei !t f (†)(t), and the susceptibilities

� j,c[!] = 1
 j/2 � i (! + 1 j)

, �m[!] = 1
� /2 � i (! � !m)

, (8)

the solution to the linearized equations can be expressed as

d̂ j [!] = � j,c[!](⇣ j [!] � i ↵ j ẑ[!]), (9)

ẑ[!] = 1
N [!]

p
� (��1 ⇤

m [�!]⌘[!] + ��1
m [!]⌘†[!]) � 2!m

X

j

(↵⇤
j � j,c[!]⇣ j [!]

+↵�⇤
j,c[�!]⇣ †[!])

�

. (10)

We have introduced the effective coupling rates ↵ j = g j xzpfā j , the operators

⇣ j [!] = p
 j,ext



1
2

�

�x j [!] + i �y j [!]
�

+ ⇠̂ j,in[!]
�

+
p

 j,int ⇠̂ j [!], (11)

and the function

N [!] = ��1
m [!]��1 ⇤

m [�!] � 2i !m

X

j

|↵ j |2
�

� j,c[!] � �⇤
j,c[�!]

�

. (12)

Equation (9) gives the optical output field â j,out(t) = p
 j,ext â j(t) � â j,in(t) from mode j .

For later use, we calculate the average phonon number nm = hĉ†ĉi. In the weak coupling
limit |↵s|, |↵p| ⌧ s, p, one finds

nm = � nth +
P

j � j n j

�̃
. (13)

Here, �̃ = � + �s + �p is the effective mechanical linewidth, and the optical contributions to it
are given by

� j = �4|� j,c[!m]|2|� j,c[�!m]|21 j |↵ j |2 j !m. (14)
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Furthermore, we define

� j n j = |↵ j |2
4

n

 j,ext[|Bj,+[!m]|2C j,xx + |Bj,�[!m]|2C j,yy + 2 Im(Bj,+[!m]B⇤
j,�[!m])C j,xy]

+ j |� j,c[�!m]|2
o

(15)

with Bj,±[!] = e�i � j � j,c[!] ± ei � j �⇤
j,c[�!] and ei � j = ↵ j/|↵ j |. Finally, we also note that the

optical spring effect leads to an effective mechanical resonance frequency !̃m = !m + �s + �p,
where

� j = 2|� j,c[!m]|2|� j,c[�!m]|21 j |↵ j |2[( j/2)2 � !2
m + 12

j ] (16)

is the shift due to mode j .

4. Toy example

To illustrate the role of technical noise in the optical sidebands, we consider a simplified
example. We treat the optomechanical system classically, and focus on a single optical
mode (omitting the index) with amplitude a(t) = e�i �t(ā + d(t)), where d(t) are the classical
fluctuations around a mean amplitude ā. In addition to neglecting vacuum noise, we also neglect
laser phase noise and thermal noise of the mechanical bath. Finally, we consider the case where
the cavity is driven on resonance, i.e. 1 = 0. The equations of motion are then

ḋ = �

2
d � i ↵z +

p
ext

2
�x(t), (17)

ċ = �
⇣�

2
+ i !m

⌘

c � i ↵ (d + d⇤) (18)

with ↵ real. Instead of considering white amplitude noise, we imagine that the amplitude of the
drive is modulated at a frequency !n, such that �x(t) = 2

p
Cxx cos !nt . The optical force on the

oscillator is then proportional to

d(t) + d⇤(t) = 2
p

extCxx |� [!n]| cos(!nt � #n), (19)

where the phase #n is defined by �c[!n] = |�c[!n]|ei #n . The dimensionless oscillator position
becomes

z(t) = 2
p

extCxx ↵ |�c[!n]|[cos(!nt � #n)Im �m[!n] � sin(!nt � #n)Re �m[!n]] (20)

when assuming !n is positive and close to !m, and !m/� � 1. The real part of the mechanical
susceptibility is a Lorentzian as a function of !n, whereas the imaginary part is antisymmetric
around the mechanical frequency:

Re �m[!n] = � /2
(� /2)2 + (!n � !m)2

, Im �m[!n] = !n � !m

(� /2)2 + (!n � !m)2
. (21)

As one would expect, the mechanical oscillation goes through a phase shift of ⇡ as the
modulation frequency !n is swept through the mechanical resonance, and the oscillation is out
of phase with the force at resonance !n = !m.

We write the optical output amplitude dout(t) = p
extd(t) � �x(t)/2 as a sum of two terms

dout(t) = dout,�x(t) + dout,z(t), (22)
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where dout,�x(t) is the amplitude for the reflected and cavity filtered signal �x(t), whereas
dout,z(t) is the part that comes from the motion of the mechanical oscillator. We define the
output spectrum as

S[!] =
Z 1

�1
d⌧ ei !⌧ hd⇤

out(t + ⌧ )dout(t)itime, (23)

where hitime denotes averaging over the time t .
The spectrum consists of three terms, S[!] = S�x,�x [!] + Sz,z[!] + S�x,z[!]. The first term

is the spectrum of dout,�x(t), which becomes

S�x,�x [!] = Cxx

4
|ext�c[!n] � 1|2 ⇥ 2⇡ [�(! � !n) + �(! + !n)]. (24)

The absolute value describes the promptly reflected signal, the cavity filtered signal, and their
interference. The second term in S[!] is the spectrum of dout,z(t), which is proportional to the
position spectrum of the mechanical oscillator. We find

Sz,z[!] = 2
ext↵

4Cxx |�c[!n]|4|�m[!n]|2 ⇥ 2⇡ [�(! � !n) + �(! + !n)]. (25)

This is proportional to the absolute square of the mechanical susceptibility, which has a
Lorentzian dependence on !n, as one would expect from a damped and driven harmonic
oscillator. Note also that Sz,z[!] is symmetric in ! as is required of a spectrum of a real, classical
variable [30].

The last term in S[!] results from optomechanical correlations between the modulation �x
and the oscillator position z:

S�x,z[!] ⌘
Z 1

�1
d⌧ ei !⌧ hd⇤

out,z(t + ⌧ )dout,�x(t) + d⇤
out,�x(t + ⌧ )dout,z(t)itime

= ext↵
2Cxx |�c[!n]|2[(ext|�c[!n]| cos #n � cos 2#n) Re �m[!n]

� (ext|�c[!n]| sin #n � sin 2#n) Im �m[!n]]2⇡ [�(! � !n) � �(! + !n)]. (26)

We see that this term depends on both the real and imaginary parts of the mechanical
susceptibility. Note also that the term S�x,z[!] is antisymmetric in !.

So far we considered amplitude modulation at a single frequency !n. In the case of white
noise, there is amplitude modulation at all frequencies simultaneously. The spectrum in that
case can be found by simply integrating the above spectrum over all frequencies !n. In the limit
where the mechanical decay rate is small compared to the cavity decay rate, � ⌧  , this gives
a spectrum consisting of a noise floor, a Lorentzian |�m[!]|2, and the antisymmetric function
given by the imaginary part of the mechanical susceptibility.

There are two important lessons to be learned from this calculation. The first is that the
sidebands of the optical output spectrum are not Lorentzian in general, but can also have
an antisymmetric part due to optomechanical correlations. The second is that even if the
antisymmetric parts are small or vanish (which happens when ext =  in this example) and
the two sidebands are Lorentzian, one cannot necessarily conclude that an asymmetry between
these peaks at zero detuning is due to the mechanical oscillator being in the quantum regime.
An asymmetry between the Lorentzian peaks can also occur due to classical optomechanical
correlations. In section 6, we will see that neglecting this effect can lead to an underestimation
of the effective phonon number.
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5. The heterodyne spectrum

We now calculate the heterodyne spectrum that results from beating between the local oscillator
beam and one of the beams entering the cavity. For this calculation, we need not specify whether
it is the lock or the cooling beam that is used for readout. We will simply refer to it as the
measurement beam below. To simplify the notation, we will drop the subscript (s or p) on the
operators and parameters that refer to the measurement beam. The other beam will not affect
the heterodyne spectrum, except indirectly through the renormalized frequency, linewidth, and
mean phonon number of the mechanical oscillator. We can thus omit this beam in the discussion
below.

The local oscillator beam is at the frequency � � !if, where !if > 0 is the intermediate
frequency between the measurement beam and the local oscillator. Including the local oscillator,
the external input mode is now

âin(t) = e�i �t



K +
1
2
(�x(t) + i �y(t))

�

�

1 +
p

r ei (!ift+✓)
�

+ ⇠̂in(t), (27)

where r = (Plo/P) ⇥ !s/(!s + !if) ⇡ Plo/P � 1 is the ratio between the local oscillator power
and the power of the beam used for measurement. The phase ✓ is not important here, as the
spectrum will not depend on it. Since !if � !m,  , the local oscillator does not affect the
mechanical oscillator and we can assume that it is promptly reflected. The output mode can
be expressed as âout(t) = e�i �t(āout(t) + d̂out(t)) where āout(t) describes the average amplitudes
of the reflected beams,

āout(t) = �K
�

⇢ +
p

r ei (!ift+✓)
�

, (28)

with ⇢ = 1 � ext/(/2 � i 1). The first term describes the measurement beam which can be
attenuated by the interaction with the cavity if there is internal dissipation, i.e. if int 6= 0. The
second term describes the promptly reflected local oscillator. The fluctuations around these
average amplitudes are given by

d̂out(t) = p
extd̂(t) � 1

2
(�x(t) + i �y(t))(1 +

p
r ei (!ift+✓)) � ⇠̂in(t), (29)

where d̂(t) is given by equation (9). The term proportional to
p

r is the promptly reflected
technical noise in the local oscillator beam.

To calculate the spectrum S[!] of the photocurrent i(t), we need to evaluate

S[!] = lim
T !1

1
T

Z T/2

�T/2
dt

Z 1

�1
d⌧ ei !⌧ i(t)i(t + ⌧ ), (30)

where the average involves an average over the photoelectron counting distribution [31], which
itself is an ensemble average. The current–current correlation function can be expressed by [32]

i(t)i(t + ⌧ ) = G2(� 2h: Î (t) Î (t + ⌧ ) :i + � h Î (t)i�(⌧ )), (31)

where Î (t) = â†
out(t)âout(t), the colons indicate normal and time ordering, and � is the

dimensionless detection efficiency. G is the photodetector gain in units of charge, i.e. the
proportionality constant between the current and the number of photon detections per time.
Although G is in general frequency dependent, we will assume that it is approximately constant
over an interval of the effective mechanical linewidth �̃ . The last term in equation (31) is
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due to self-correlation of photoelectric pulses (here we have assumed the detector has infinite
bandwidth for simplicity).

The flux operator Î (t) has many terms, but we are only interested in the beating terms that
oscillate at approximately the intermediate frequency !if. The noise in Î (t) at the sidebands
!if ± !m has two contributions—beating between the average local oscillator beam and the
fluctuations in the measurement beam, and beating between the average measurement beam
and the noise in the local oscillator beam. Both of these contributions are proportional to K

p
r .

We let Srr[!] denote the spectrum S[!] at the red sideband, i.e. around the frequency
!r = !if � !̃m. After a straightforward but tedious derivation, we find

Srr[!] = G2
r � r K 2



Frr +
�̃ L rr + (! � !r)Arr

(�̃ /2)2 + (! � !r)2

�

, (32)

where we have made the assumption of weak coupling |↵| ⌧  and Gr is the gain at frequency
!r. The spectrum consists of three terms. The first term is a constant noise floor, whose size is
determined by the coefficient

Frr = 1 +
�

4
[(|⇢|2 + |ext�c[�!m] � 1|2)(Cxx + Cyy) � 2 Re[⇢⇤(ext�c[�!m] � 1)

⇥(Cxx + 2i Cxy � Cyy)]]. (33)

The first term in (33) is due to shot noise, and the other terms result from technical noise. As a
sanity check, we note that for ext = 0 or for |1| ! 1, i.e. when the measurement beam does
not enter the cavity, this coefficient reduces to Frr = 1 + �Cxx . This is independent of phase
noise, as it should be since a photodetector cannot detect phase noise directly.

The second term in equation (32) is a Lorentzian centered on the frequency !r with a width
equal to the mechanical linewidth �̃ . The coefficient of this term is

L rr = �ext|↵|2[|�c[�!m]|2(nm + 1) + Re B̃[!m]] (34)

with

B̃[!] = ext

4
|�c[�!]|2e�i �[(Cxx+i Cxy)B+[!]+(i Cxy�Cyy)B�[!]] � 1

4
�⇤

c [�!]e�i �[(Cxx B+[!]

+i Cxy B�[!])(1 + ⇢) + (i Cxy B+[!] � Cyy B�[!])(1 � ⇢)] (35)

and B±[!] = e�i ��c[!] ± ei ��⇤
c [�!]. The first term in (34) is the contribution from

the mechanical oscillator spectrum, whereas the second originates from optomechanical
correlations between the oscillator position and the technical laser noise.

The third term in the red sideband spectrum equation (32) is proportional to the imaginary
value of the effective mechanical susceptibility and thus changes sign at !r. This antisymmetric
term is absent if there is no technical laser noise. Its coefficient is

Arr = 2�ext|↵|2 Im B̃[!m]. (36)

We now move on to the blue sideband at !b = !if + !̃m and denote the spectrum around
this frequency by Sbb[!], finding

Sbb[!] = G2
b � r K 2



Fbb +
�̃ Lbb + (! � !b)Abb

(�̃ /2)2 + (! � !b)2

�

, (37)

where Gb is the photodetector gain at the frequency !b. The spectrum at the blue sideband
has the same three terms as the red sideband, but with different coefficients. The noise floor is
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determined by

Fbb = 1 +
�

4

h

�|⇢|2 + |ext�c[!m] � 1|2� �

Cxx + Cyy
� � 2 Re

⇥

⇢⇤ (ext�c[!m] � 1)

⇥ �

Cxx + 2i Cxy � Cyy
� ⇤

i

, (38)

the coefficient of the Lorentzian term is

Lbb = �ext|↵|2[|�c[!m]|2nm � Re B̃[�!m]] (39)

and the coefficient of the antisymmetric term is

Abb = �2�ext|↵|2 Im B̃[�!m]. (40)

6. Sideband weights

Let us define the sideband weights Wrr and Wbb as the frequency integral of the spectra
Srr[!] � S0,rr and Sbb[!] � S0,bb, where S0,rr and S0,bb are the noise floors at the red and blue
sidebands, respectively. We also assume that the difference in gains at the red and blue sidebands
is accounted for. The antisymmetric parts proportional to Arr and Abb will not contribute to the
integral, and we find that the ratio of the sideband weights is

Wbb

Wrr
= |�c[!m]|2nm � Re B̃[�!m]

|�c[�!m]|2(nm + 1) + Re B̃[!m]
. (41)

In the absence of technical laser noise, and at zero detuning 1 = 0, this reduces to the
Boltzmann weight, Wbb/Wrr = nm/(nm + 1), as is well known [10, 11]. In general, however, the
ratio of the sideband weights do not provide a direct measure of the effective phonon number
nm. To determine nm by this method, one needs to know the detuning 1, the decay rates , ext,
and the noise coefficients Cxx , etc to a sufficient accuracy.

To illustrate that one needs to be careful in this regard, let us for a moment assume that
int = 1 = 0 and that phase noise dominates, i.e. Cxx ⌧ Cxy, Cyy . This gives

Wbb

Wrr
= nm + Cxy|�c[!m]|2!m/2

nm + 1 + Cxy|�c[!m]|2!m/2
= nest

nest + 1
, (42)

such that one would naively estimate the average phonon number to be nest = nm +
Cxy|�c[!m]|2!m/2 if technical noise is neglected. We see that, since the cross-correlation
coefficient Cxy can be negative, this can potentially lead to underestimating the phonon number.
Note also that the absence of the phase noise coefficient Cyy in this simple example crucially
depends on the assumption of exactly zero detuning.

7. Discussion

The above analysis makes it clear that in order to reliably perform a calibrated heterodyne
thermometry measurement, we must first develop a reliable characterization of the laser’s
classical noise. We have made some initial estimates using the experimental apparatus described
above.

It is straightforward to determine the amplitude noise Cxx by directly measuring laser
power fluctuations with a photodiode (and subtracting the shot noise and the photodiode’s dark
noise) [33]. For our cooling laser, this yields a value Cxx = 0.02 for laser power Pp = 1 µW.

New Journal of Physics 14 (2012) 115018 (http://www.njp.org/)

http://www.njp.org/


15

Figure 3. Laser noise and cooling limits. (a) Classical phase noise Cyy of our
cooling laser for Pp = 1 µW measured using the cold cavity as a reference, both
with (blue) and without (red) the filter cavity. Near !m, the unfiltered noise
background corresponds to Cyy = 200 at 1 µW. At nearby frequencies (e.g.
270 kHz) the filter cavity performs as expected, but membrane vibrations (at
261 kHz) and other technical noise added by our system clouds the measurement
of Cyy at other frequencies. The large peak at 263 kHz corresponds to an
intentional, known phase modulation (applied with an EOM) that we use as
a reference to calibrate this data. The unfiltered data was taken with Plo =
423 µW and Pp = 1.5 µW. The filtered data was taken with Plo = 239 µW,
Pp = 16.3 µW. (b) Predicted phonon occupancy versus cooling laser power for
zero (red), one (blue), and two (purple) passes through the filter cavity described
in the text.

We can estimate the phase noise Cyy by using the optical circuit described above, and
allowing the membrane cavity to serve as a reference. We do this by comparing the noise spectra
of the laser light leaving the cryostat under two conditions: with the laser tuned far from the
cavity resonance (so the signal photodiode is only sensitive to amplitude noise) and with the
laser near resonance (so phase noise is converted to amplitude noise) [33]. Figure 3(a) shows
a plot of the cooling laser’s phase noise near !m. The ‘unfiltered’ (red) spectrum corresponds
to the free-running cooling laser used in the experiment. A peak from the membrane’s thermal
motion, along with a known phase modulation peak at 263 kHz (use to calibrate this data), sits
on top of a broad background arising from the cooling laser’s intrinsic phase noise of Cyy ⇡ 200
at 1 µW near !m. The estimate shown in figure 3(a) assumes Cxy = 0 for simplicity, though
letting Cxy vary over the allowed range ±p

CxxCyy only changes this estimate by a few per
cent.

Given this estimate of the cooling laser’s classical noise, we can estimate the fundamental
limits of laser cooling with this system using equation (13) above. The curve labeled ‘unfiltered’
in figure 3(b) shows the expected average phonon occupancy as a function of power for the
free-running cooling laser. Also included in this calculation is a 1.5 µW signal laser with
1s = 0, Cxx = 0.13, Cxy = 0, and Cyy = 780. These values of Cxx and Cyy correspond to similar
measurements of the signal laser, and we again assume Cxy ⇡ 0 (the result in figure 3(b) is
insensitive to the value of Cxy). The minimum phonon occupancy that could be achieved with
the current cryogenic apparatus is ⇠30, corresponding to a temperature ⇠375 µK.

In an effort to reduce the classical noise, we have inserted a filter cavity in the cooling
laser’s room-temperature beam path. This cavity has a resonance width filter/2⇡ = 22 kHz,
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meaning the cooling laser’s classical noise power should scale down by a factor 1 + 4!2
m/2

filter ⇠
500. We lock the filter cavity to the free-running cooling laser and measure its noise again as
shown in figure 3(a). We observe the expected reduction at some frequencies near !m (e.g.
270 kHz), and attribute the remaining noise structure to our use of the acoustically-sensitive
membrane cavity as the measurement reference. Nonetheless, the observation of filtered laser
noise while locked to the cryogenic cavity is encouraging, and we expect the filter cavity to
perform as predicted over the full spectrum in a vibration-isolated system.

Once the filter cavity is locked to the cooling laser, it is straightforward to rotate the
polarization of the output light and pass it through the filter cavity again with no additional
feedback [34]. This enables four poles of passive filtering, and would further reduce the cooling
laser noise. Such a double-filtered cooling laser would allow the membrane to be laser cooled
very close to its quantum mechanical ground state, as shown in figure 3(b).
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